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tonic input control

[Non-specific Fine motor] Chronic “complete” SCI

-Inability to stand and walk.
-The level of excitability of spinal
circuits controlling posture and

locomotion Is compromised.
(Dietz et al., 1995; Harkema 2008; Cote et al., 2017)

Spinal stimulation for motor

f for posture and recovery capitalizes on the
g locomotion human spinal cord sensory-
motor potential that still
Sensory persists after SCI.

feedback




“The spinal cord is smart” — 1. Automaticity

Pharmacological,
Electric or Tactile
stimulation can
generate oscillating
activation patterns,
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“The spinal cord is smart” — 2. Plasticity
After a complete transaction, the spinal cord can learn to
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3. Residual Supraspinal Connectivity to the Spinal
Circuitry after Motor Complete Spinal Cord Injury

gey  Most (~ 80%) of clinically motor
complete SCI (AIS A and B) are not
anatomically complete.

Non-detectable and/or
non-functional descending input
can play a crucial role with spinal
stimulation.




Spinal cord epidural stimulator
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81

Arnold et al., 2019 - surgical placement
and infections.

Boakye et al., under review - technical
notes of surgical procedures

An epidural spinal cord stimulation unit (Medtronics, Restore
ADVANCED or INTELLIS) and a 16-electrode array, implanted at
T11-L1 over spinal cord segments L1-S1.



Mechanisms and structures involved In scisS -
“enabling” strategy

Residual Supraspinal input
Volitional modulation of

Gerasimenko et al., 2015

motor pattern
STIMULATION
to proximal egmg\nt %
scES Spinal circuitry
Excitability - controlling posture
modulation and locomotion
Automaticity

!

Motor output Sensory feedback
Standing; stepping Control of motor

pattern

¥
to antagonist

Sensory cues

-Primary recruitment of large myelinated fibers associated with
somatosensory information, altering the excitability of spinal circuits
Involved In motor pattern generation.

Capogrosso et al., 2013; Moraud et al., 2016)



Spinal cord Epidural Stimulation (sckS) -
“enabling” stimulation strategy

Sit to stand
C transition
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(1) Near-motor threshold stimulation amplitudes and

(2) relatively high frequencies, which induce little EMG

and no movement during sitting, allow sensory information
to serve as a source of control. (Rejc et al., 2015)



ScES and assisted stepping

A Stepping with no stimulation B standing with stimulation C Stepping with stimulation
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scES and tralnlng for standmg
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scES and training for volitional leg movements

Sub-threshold scES can re-enable
volitional motor control after paralysis TS :
through non-functional and /or non- 0o0:49:05-03

detectable connectivity
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Volitional contribution during standing with
SCES
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\olitional contribution during assisted stepping

LEFT with scES
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SCES, training and volitional contribution for
stepping

stepping on a treadmill



SCES, training and volitional contribution for
walking overground

Angeli et al., 2018



Key factors for the recovery of motor
function after motor “complete” using SCES

6) Characteristics of \
activity-based training

\_

subsequent neural adaptations

?) Characteristics of SCI and

J




SCES parameters — electrode configuration 1
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~4.3*10”7 combinations of electrodes.

Topographical recruitment (Sayenko et
al., 2014)

Functional characteristics of the
facilitated pattern generation (i.e.

- rhythmic vs tonic activity, Gerasimenko

etal., 2008)
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SCES parameters — electrode configuration 2

Supine

Individualized maps of
motor pools activation —
supine position
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Minor electrode configuration adjustments may or
may not result in a drastic change in motor output

mplitude (uV)

EMG a1

Rejc et al.,, 2015



Selection of stimulation parameters — frequency

Higher stimulation frequency (i.e. > 25 Hz) facilitate: (1) rhythmic
activity; (2) the progressive contribution of afferent inputs to shape the
evoked responses through the activation of interneurons.
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Selection of stimulation parameters — amplitude

Lower amplitude: initial recruitment of the lower threshold
afferent structures

Higher amplitudes: more efferent volleys; possibly activating
motorneurons and/or anterior roots.

Sayenko et al., 2014



Individual-specificity of stimulation parameters — 1
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stimulation stimulation
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Individual-specificity of stimulation parameters
_for standing - 2

A Assisted at hip and knee B

IL 200 | | ' -lefel‘ence |n

1) spinal cord anatomy

oo 2) position of the electrode
_— array with respect to the spinal
. cord.

3) characteristics of the lesion

and following plasticity

™o Influence the reorganization of
o the spinal circuitry, including
. | interneurons function.
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(%)  Classification Accuracy (%)
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A step forward toward facilitating the selection of
SCES parameters - 1
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Machine learning can
classify with high accuracy

standing ability based on
EMG-time and —frequency
domain features.

Mesbah et al, 2019



A step forward toward facilitating the selection
of scES parameters - 2

Machine learning prediction algorithm can rank the
effectiveness of EMG activity for standing.

Assisted standing Ranking score for standing
muscle activation
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Severe Spinal Cord Injury

Impacts sensory-motor and autonomic functions

Home About Abstracts Committees  SCI Scholarshi Sp

Moving Beyond
[solated Systems

A whole-body approach to understanding spinal cord
injury, recovery, and the currentscientific evidence

for neuromodulation.

Expand your knowledge about SCI treatment and recovery
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